

Date Planned ://	Daily Tutorial Sheet-10	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :		

Match each of the diatomic molecules in Column-I with its property/properties in Column-II. (2009) 136.

Column-I		Column-II		
(A)	B ₂	(p)	Paramagnetic	
(B)	N ₂	(p)	Undergoes oxidation	
(C)	O_2^-	(r)	Undergoes reduction	
(D)	O_2	(s)	Bond order ≥ 2	
		(t)	Mixing of 's' and 'p' orbital	

137.	The total number of diprotic acids among the following is :
------	---

(E) (2010)

 H_3PO_4 H_2SO_4 H_3PO_3 H_2CO_3 $H_2S_2O_7$ H₃BO₃ H₃PO₂ H₂CrO₄ H₂SO₃

138. All the compounds listed in Column-I react with water. Match the result of the respective reactions with the appropriate options listed in Column-II. (2010)

	Column-I	Column-II		
(A)	$(CH_3)_2SiCl_2$	(p)	Hydrogen halide formation	
(B)	XeF_4	(p)	Redox reaction	
(C)	Cl_2	(r)	Reacts with glass	
(D)	VCl ₅	(s)	Polymerization	
		(t)	O ₂ formation	

139. The value of n in the molecular formula $Be_nAl_2Si_6O_{18}$ is : (2010)

140. Extra pure N_2 can be obtained by heating:

(2011)

NH₃ with CuO (B)

 NH_4NO_3

 $(NH_4)_2 Cr_2 O_7$ **(D)**

 $Ba(N_3)_2$

141. Among the following, the number of compounds that can react with PCl₅ to give POCl₃ is (2011) ${\rm O_2,\,CO_2,\,SO_2,\,H_2O,\,H_2SO_4,\,P_4O_{10}\,.}$

(C)

142. Which of the following hydrogen halides react(s) with AgNO₃(aq) to give a precipitate that dissolves in $Na_2S_2O_3(aq)$? (2012)

- (A) **HCl**
- **(B)**
- (C) HBr
- (D) HI

143. Reaction of Br₂ with Na₂CO₃ in aqueous solution gives sodium bromide and sodium bromate with evolution of CO_2 gas. The number of sodium bromide molecules involved in the balanced chemical (2011) equation is:

Paragraph for Q. 144 to 146

Bleaching powder and bleach solution are produced on a large scale and used in several household products. The effectiveness of bleach solution is often measured by iodometry.

44.	Bleach	ning powder c	ontains a s	alt of an oxo	acids as one	of its compo	onents. The	anhydride of	that oxoacio
	is:								(2012)
	(A)	$\mathrm{Cl_2O}$	(B)	Cl_2O_7	(C)	ClO_2	(D)	Cl_2O_6	
145.		of household ration of the							
	molari	ity of the hous	sehold blea	ch solution is	s:				(2012)
	(A)	0.48 M	(B)	0.96 M	(C)	0.24 M	(D)	0.024 M	
146.	Which ordering of compound is according to the decreasing order of the oxidation state of nitrogen?								
	(A)	HNO ₃ , NO,	NH ₄ Cl, N ₂		(B)	HNO ₃ , NO	, N ₂ , NH ₄ Cl		(2012)
	(C)	HNO_3 , NH_4	Cl, NO, N ₂		(D)	NO, HNO ₃	, NH ₄ Cl, N ₂		
	(A) (B) (C) (D)		on; +3 and						
148.	The shape of XeO_2F_2 molecule is : (201							(2012)	
	(A)	trigonal bip	yramidal		(B)	square pla	nar		
	(C)	tetrahedral			(D)	see-saw			
149.		ambient cond te shown below XeF ₆ Comple	w is : ete hydrolysis	P + other J OH / H ₂ O Q slow dispresin OH / H ₂	product	leased as pro	oducts in th	e final step o	f the reaction (2013)
	(A)	0	(B)	products	(C)	2	(D)	3	

150.

Concentrated nitric acid, upon long standing, turns yellow-brown due to the formation of :

(C)

 N_2O

 NO_2

 N_2O_4

(2013)